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Closed-Form Expressions for a Number of Fourier-
Bessel Series Encountered in the GSD Method

A. Jostingmeier, C. Rieckmann, and A. S. Omar

Abstract—In the application of the generalized spectral-domain
(GSD) method to the analysis of waveguides, infinite sums over
eigenmodes have to be evaluated. The efficiency of the GSD
method is considerably enhanced if these sums can be replaced
by closed-form expressions. Up to now, appropriate identities are
known for circular and rectangular waveguides only. Expressions
associated with sector waveguides will be considered.

1. INTRODUCTION

N HIGH output power gyrotrons, the interaction between

the electron beam and the electromagnetic field takes place
in a highly overmoded cavity. Therefore, mode competition
becomes a severe problem especially in the design of gyrotrons
operating at higher harmonics of the cyclotron frequency.
Recently, it has been suggested to overcome this problem using
a new cavity structure [1]. Fig. 1 shows the cross section of
the new cavity.

In [1], a conventional field matching method has been ap-
plied to analyze the composite waveguide. But this method is
not suitable for this structure because the expansion functions
do not fulfill the edge conditions at the slot edges. This leads
to oversized matrices, slow convergence, and inaccurate field
distributions.

This problem can be circumvented by applying the GSD
method. It is based on short-circuiting the coupling slots and
replacing the nonvanishing slot tangential electric field by two
surface magnetic currents at the two sides of the short circuit.
The two surface currents that are yet unknown are equal in
magnitade and opposite in sign. The electromagnetic field in
the individual waveguides is expanded with respect to the
corresponding eigenmodes. Applying the moment method, the
unknown surface magnetic currents are expanded in terms of
suitable basis functions that satisfy the edge conditions at the
slot edges. Testing the continuity of the tangential magnetic
field across the slots by the same basis functions (Galerkin’s
procedure) results in a matrix equation, the unknowns of which
are the expansion coefficients of the surface magnetic currents.

Each matrix element contains a doubly infinite sum that
has to be summed with respect to the azimuthal and radial
indices corresponding to the eigenmodes of the circular and
sector waveguides. For the structures considered in [2], it has
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Fig. 1. Cross section of the new gyrotron resonator.

been found that the summations over the indices corresponding
to the directions normal to the surface currents have closed-
form expressions. This increases the numerical efficiency of
the GSD method drastically.

In [3], closed-form expressions for Fourier and Fourier—
Bessel series have been given. Following the analysis pre-
sented in [3], the eigenmodes of one waveguide are expanded
with respect to the eigenmodes of another waveguide. Use of
the orthogonality property of the eigenmodes is then made in
order to yield some identities. The closed-form expressions
which we are looking for can consequently be obtained by
suitable linear combinations of these identities.

Ii. BASIC FORMULATION

Let us consider two waveguides of cross section A
and A®), with A®) c A®) which are joined in the plane
z = constant, where z denotes the axial coordinate.

Let {h%} and {e%} (2 = 1, 2) be the complete sets of axial
magnetic and axial electric fields in the individual waveguides.
It is important to note that the set {hi“,%} is complete only if
hilo) is included. The mode characterized by hi’o) has only an
axial magnetic field which is constant over the cross section of
the waveguide. The corresponding cut-off wavenumber must
vanish. For the axial electric and axial magnetic fields, the
following orthogonality relations hold:
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where kfn(i) and kf,gi) are the cut-off wavenumbers of the mth
TE and the mth TM eigenmodes, respectively. The asterisk (x)
denotes complex conjugate and §,,, is the Kronecker delta.
Equation (1c) fixes tho)| to unity.

The transverse fields of the eigenmodes satisfy the orthog-
onality relations
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where V,; and k are the transverse component of the del-
operator and the unit vector in axial direction, respectively.
The sets {vtei’,;} and {Vthg% x k} are complete with
respect to curl-free and divergence-free transverse electric
fields, respectively, which can be supported by the ith wave-
guide. The transverse and axial components of the eigenmodes
corresponding to waveguide (2) can be expanded with respect
to the eigenmodes of waveguide (1) on the common cross
section AM):
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Making use of the orthogonality relations (1a)—(1f) results in
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Applying Stoke’s theorem, it can be shown that %,,, van-
ishes. If we substitute the expansions (2a)—(2d) into the
orthogonality relations (1d), (1e), (1a), and (1b) for waveguide
(2) we get
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Note that the TE mode with h,
A(l)wmowzo.

= constant enters (4d) as

III. SECTOR WAVEGUIDE

In a sector waveguide with radii p; and ps (p1 < p2) and
angle 20, the axial electric and magnetic fields can be written
as
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Unp = V.h2) - V,h )" ds (3c) respectively. Ng,, and NI denote normalization quantities
A N which are given by (5¢) and (5d) below.
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Fe (kS,.p) and Ff;n(k,’jmp) describing the radial variation
of the fields read
Frlknp) =
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where .J,  and IV, = are the Bessel and Neumann functions of

order v,, respectively. The boundary conditions at p = +6
leads to

mw
ke, and k! have to fulfill the characteristic equations
Frn(kpanp2) = 0 (5h)
Fhin(klp2) =0 (51)

Let us now consider a sector waveguide discontinuity. In
the azimuthal direction both waveguides cover the same sector
with an angle of 26. In the radial direction the waveguides (1)
and (2) are characterized by the radii pgl) =a, pgl) = b and

(2) O]

pgz) =c(c<a), py = p;’ , respectively.

A. TE Modes
Exploiting the identities (4b) and (4¢) yields
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If we choose the linear combination of (6a) and — (k,’ﬁl(,%))
times (6b) we get the closed-form expression:
s 1w 1
mO(kca)z 40 (b)2 .

2
R dS ~ 6mo

a

+ 3 N’ !
ZJ ’) (Ha)” ~ (k2a)?
1 1 «? F#z(y?)(kfa)

= — . (7
1+ b6mo ké‘a 40 ng(ﬁ),(kga) @

In (7), k%g) has been replaced by the wavenumber k. The

integral
Jes

which appears in (6a) and in (6b) has no closed form.
Fortunately, both integrals cancel each other.

The left-hand side of (7) is just the expression which has
to be calculated in the GSD method. Now we are able to
substitute the infinite sum by a closed-form expression. The
inner radius ¢ can completely be eliminated from (7) using the
characteristic equation (5i) for waveguide (2).
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B. TM Modes

Following a similar analysis for the TM modes we get by
combining (4a) and (4¢)
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The left-hand side of (8) represents that expression which the
GSD method requires.

IV. CONCLUSION

Some closed-form expressions for infinite summations have
been derived that are encountered in the application of the
GSD method to structures containing sector waveguides. The
numerical efficiency of the GSD method can consequently be
increased by some orders of magnitude if the closed-form
expressions are used.
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